3 research outputs found

    Prevalence of Bourbon and Heartland viruses in field collected ticks at an environmental field station in St. Louis County, Missouri, USA

    Get PDF
    Heartland and Bourbon viruses are pathogenic tick-borne viruses putatively transmitted by Amblyomma americanum, an abundant tick species in Missouri. To assess the prevalence of these viruses in ticks, we collected 2778 ticks from eight sampling sites at Tyson Research Center, an environmental field station within St. Louis County and close to the City of St. Louis, from May - July in 2019 and 2021. Ticks were pooled according to life stage and sex, grouped by year and sampling site to create 355 pools and screened by RT-qPCR for Bourbon and Heartland viruses. Overall, 14 (3.9%) and 27 (7.6%) of the pools were positive for Bourbon virus and Heartland virus respectively. In 2019, 11 and 23 pools were positive for Bourbon and Heartland viruses respectively. These positives pools were of males, females and nymphs. In 2021, there were 4 virus positive pools out of which 3 were positive for both viruses and were comprised of females and nymphs. Five out of the 8 sampling sites were positive for at least one virus. This included a site that was positive for both viruses in both years. Detection of these viruses in an area close to a relatively large metropolis presents a greater public health threat than previously thought

    The Related Transcriptional Enhancer Factor-1 Isoform, TEAD4216, Can Repress Vascular Endothelial Growth Factor Expression in Mammalian Cells

    Get PDF
    Increased cellular production of vascular endothelial growth factor (VEGF) is responsible for the development and progression of multiple cancers and other neovascular conditions, and therapies targeting post-translational VEGF products are used in the treatment of these diseases. Development of methods to control and modify the transcription of the VEGF gene is an alternative approach that may have therapeutic potential. We have previously shown that isoforms of the transcriptional enhancer factor 1-related (TEAD4) protein can enhance the production of VEGF. In this study we describe a new TEAD4 isoform, TEAD4216, which represses VEGF promoter activity. The TEAD4216 isoform inhibits human VEGF promoter activity and does not require the presence of the hypoxia responsive element (HRE), which is the sequence critical to hypoxia inducible factor (HIF)-mediated effects. The TEAD4216 protein is localized to the cytoplasm, whereas the enhancer isoforms are found within the nucleus. The TEAD4216 isoform can competitively repress the stimulatory activity of the TEAD4434 and TEAD4148 enhancers. Synthesis of the native VEGF165 protein and cellular proliferation is suppressed by the TEAD4216 isoform. Mutational analysis indicates that nuclear or cytoplasmic localization of any isoform determines whether it acts as an enhancer or repressor, respectively. The TEAD4216 isoform appears to inhibit VEGF production independently of the HRE required activity by HIF, suggesting that this alternatively spliced isoform of TEAD4 may provide a novel approach to treat VEGF-dependent diseases

    Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice.

    Get PDF
    Relapsing C. difficile disease in humans is linked to a pathological imbalance within the intestinal microbiota, termed dysbiosis, which remains poorly understood. We show that mice infected with epidemic C. difficile (genotype 027/BI) develop highly contagious, chronic intestinal disease and persistent dysbiosis characterized by a distinct, simplified microbiota containing opportunistic pathogens and altered metabolite production. Chronic C. difficile 027/BI infection was refractory to vancomycin treatment leading to relapsing disease. In contrast, treatment of C. difficile 027/BI infected mice with feces from healthy mice rapidly restored a diverse, healthy microbiota and resolved C. difficile disease and contagiousness. We used this model to identify a simple mixture of six phylogenetically diverse intestinal bacteria, including novel species, which can re-establish a health-associated microbiota and clear C. difficile 027/BI infection from mice. Thus, targeting a dysbiotic microbiota with a defined mixture of phylogenetically diverse bacteria can trigger major shifts in the microbial community structure that displaces C. difficile and, as a result, resolves disease and contagiousness. Further, we demonstrate a rational approach to harness the therapeutic potential of health-associated microbial communities to treat C. difficile disease and potentially other forms of intestinal dysbiosis
    corecore